De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Reageren...

Re: Integrand met de wortel uit een kwadraatterm

Taniyama en Shimura hadden dit vermoeden, Wiles heeft het later gebruikt voor het bewijzen van de laatste stelling van Fermat. Maar wat betekent deze stelling nou eigenlijk?
Wat is modulair, wat zijn rationale co-efficienten en waar kan ik meer informatie vinden over deze twee wiskundigen?
groetjes Hilde

Antwoord

Je kent de stelling van Pythagoras natuurlijk. Al in de oudheid vroeg men zich af of er een "recept" te geven was waarmee je zogenaamde Pythagoreïsche tripels kon vinden, hetgeen er simpel gezegd op neerkomt dat men 3 natuurlijke getallen zoekt die zich aan de stelling van Pythagoras houden. Je kent er vast wel een paar: (3,4,5) en (12, 5,13) en (8,15,17).
Dit vraagstuk heeft men toen al volledig kunnen oplossen en het resultaat was: er zijn oneindig veel drietallen (a,b,c) mogelijk die zich houden aan de regel a2 + b2 = c2.

Het is logisch dat men de vraag al snel algemener stelde:
zijn er drietallen die zich houden aan a3 + b3 = c3 of a4 + b4 = c4 enz.?

Met deze vraag heeft men eeuwen geworsteld, al beweerde Fermat te hebben bewezen dat zulke drietallen niet bestonden. Zijn bewijs is nooit teruggevonden en men is van lieverlee moeten gaan geloven dat hij zich vermoedelijk vergist had. Pas begin jaren '90, dus zo'n ruime 300 jaar later, wist Wiles een sluitend en ongelooflijk knap bewijs te leveren dat er inderdaad geen oplossingen bestaan.
Hij maakte gebruik van zeer geavanceerde begrippen (volkomen onbekend in de tijd van Fermat), en één van die begrippen is die geheimzinnige modulaire vorm. Deze komen voor in de abstracte algebra, en dat is bepaald niet het meest eenvoudige onderwerp in de wiskunde!
Het is echter bijna ondoenlijk om uit te leggen wat het precies zijn, maar zeer onwiskundig geformuleerd en dus weinig zeggend, komt het neer op bepaalde verzamelingen met een zeer rijke structuur. Rationale coëfficiënten is minder ingewikkeld: dat zijn niets anders dan breuken.

Ten slotte: omdat de ontdekking ook buiten de wiskundewereld nogal tot de verbeelding sprak, is er een aantal populaire boeken verschenen die dit behandelen.
Een daarvan is geschreven door Simon Singh en hoe kan het anders heten dan "De laatste stelling van Fermat"?
Kijk maar eens in de bieb; ze hebben het vast wel.

Zie eventueel ook deze recensie

Gebruik dit formulier alleen om te reageren op de inhoud van de vraag en/of het antwoord hierboven. Voor het stellen van nieuwe vragen kan je gebruik maken van een vraag stellen in het menu aan de linker kant. Alvast bedankt!

Reactie:

Klik eerst in het tekstvlak voordat je deze knopjes en tekens gebruikt.
Pas op: onderstaande knopjes en speciale karakters werken niet bij ALLE browsers!


áâæàåãäßçéêèëíîìïñóôòøõöúûùüýÿ½¼¾£®©




$\mathbf{N}$ $\mathbf{Z}$ $\mathbf{Q}$ $\mathbf{R}$ $\mathbf{C}$
Categorie: Integreren
Ik ben:
Naam:
Emailadres:
Datum:18-5-2024